
Roaming Components
User Manual

revision: 1.9
December 2006

Contents

1 Introduction 4

2 Roaming Components 6

2.1 ASCII 2TAP . 6

2.2 TAP2ASCII . 8

2.3 TAP Validator . 9

2.4 TAPx2TAPy . 13

2.5 TAP Splitter . 15

2.6 TAP Merger . 17

2.7 TAP Anonymizer . 18

2.8 TAP2XML . 20

2.9 XML2TAP . 21

3 Supported platforms 23

2

List of Figures

2.1 ASCII 2TAP inputs and outputs . 6

2.2 TAP2ASCII inputs and outputs . 8

2.3 TAP Validator inputs and outputs . 9

2.4 TAPx2TAPy inputs and outputs . 13

2.5 TAP Splitter inputs and outputs . 15

2.6 TAP Merger inputs and outputs . 18

2.7 TAP Anonymizer inputs and outputs 19

2.8 TAP2XML inputs and outputs . 20

2.9 XML2TAP inputs and outputs . 22

3

Chapter 1

Introduction

Semantix Roaming Components is a collection of versatile command line ap-
plications that operate on TAP3 files in an autonomous manner; without any
human intervention.

Roaming Components adopt a UNIX-like tools philosophy whereby complex
tasks are performed by wiring together a collection of simpler, standardized,
independently tested and evolved modules or tools. This is contrasted with the
philosophy of providing monolithic applications that supposedly solve all your
problems (when in fact, due to their complexity, introduce major problems of
their own).

The following technical principles have guided the architecture and implemen-
tation of the Semantix roaming components:

Modularity: Semantix roaming components were specifically designed with
modularity in mind. The provided suite is not a single, tightly-knit appli-
cation (though the end-user can always consider it as a single application
from his point of view). Instead of shoe-horning every conceivable require-
ment into a one-size-fits-everything application, Semantix has developed
a suite of self-contained modules (components), each of which can be used
as an independent application on its own. By standardizing the way all

4

CHAPTER 1. INTRODUCTION

these modules interact with their environment they can be easily combined
together to provide more powerful solutions.

Technology: Semantix Roaming Components are based on highly-optimized
C++ code for the hard tasks of TAP3 processing, like validations, con-
versions, et.c. C++ is unrivalled when it comes to performance, maturity
and making the best use of available resources. C++ compiler technolo-
gies have been continuously honed for the past 20 years for a vast array
of hardware / OS platforms and overall provide the best solution when it
comes to low-level custom development.

Environment-neutral: From a programming environment perspective, the
modules implemented in C++ make as few assumptions about the en-
vironment in which they operate as possible (close to none). The C++
implementation is “pure”: it is only concerned with the abstract logic and
the algorithms necessary to process TAP files. In fact the entire C++
implementation uses only the standard language libraries so that the full
source code can be compiled and built in every system that features a
decent C++ compiler/linker.

No external libraries: The entire system is built using code that Semantix
owns. Semantix has developed its own ASN.1-compiler to be totally inde-
pendent of ASN.1 compiler vendor’s software.

Configurable: Many components are configurable via XML files. Since these
files contain simple XML constructs, they can be directly created, edited
or adapted to new requirements. In many cases, there is a default con-
figuration ”inside” a component, allowing it to work without an external
XML configuration file (e.g. see section 2.3, the TAP Validator).

Standards-based: The entire implementation is based on published, open
standards and technologies. No closed source third-party tools or libraries
are utilized.

SEMANTIX INFORMATION
TECHNOLOGIES S.A.

– 5 of 24 – ROAMING COMPONENTS
USER MANUAL

Chapter 2

Roaming Components

2.1 ASCII2TAP

The ASCII 2TAP module is used to create a TAP file out of an incoming ASCII
file.

The inputs / outputs of the ASCII 2TAP module are depicted in Figure 2.1.

Figure 2.1: ASCII2TAP inputs and outputs

6

CHAPTER 2. ROAMING COMPONENTS

The ASCII 2TAP module is typically triggered with the following command
line:

�
1 ASCII2TAP [−v] [−V] [−h] [− f i xup]

2 −ims p lug in . d l l

3 − i inputTextFileName −o createdTapFileName
� �
Square brackets indicate optional arguments. Arguments are thus:

• “-v” requests verbose mode (additional ‘v’s as in “-vv” or “-vvv” increase
verbosity)

• “-V” prints the component’s version number

• “-h” prints a summary of the component’s command line options

• “-fixup” requests an update of the AuditControlInfo structure at the end
of the mapping. This guarantees that the generated TAP file’s “summary”
section contains up-to-date information on the number of calls, the total
charges, et.c.

• “-ims” points to the input plugin that provides the mapping specification
between the incoming ASCII file and the outgoing TAP file. The TAP
version of the TAP file to be created is specified inside the plugin’s code.

• “-i” points to the incoming ASCII file

• “-o” points to the outgoing TAP file (to be created)

Upon invocation, the ASCII 2TAP module converts the incoming ASCII file
into the specified TAP file, mapping the fields as dictated by the code in the
plugin. Notice that since the plugin contains compiled C code1 it can perform
arbitrarily complex mapping rules — calculated fields, etc.

The ASCII 2TAP roaming component currently supports the following TAP
formats: 3.1, 3.2, 3.3, 3.4, 3.9. 3.10 and 3.11.

1For more on creation of plugins, see the whitepaper on ASCII2TAP available from

http://www.tapeditor.com.

SEMANTIX INFORMATION
TECHNOLOGIES S.A.

– 7 of 24 – ROAMING COMPONENTS
USER MANUAL

CHAPTER 2. ROAMING COMPONENTS

2.2 TAP2ASCII

The inputs / outputs of the TAP2ASCII module are depicted in Figure 2.2.

Figure 2.2: TAP2ASCII inputs and outputs (for legend see Figure 2.1).

The TAP2ASCII module is typically triggered with the following command line
(expanded over more than one line for ease of reference):

�
1 TAP2ASCII [−v] [−V] [−h]

2 −ims p lug in . d l l

3 − i inputTapFileName −o createdTextFileName
� �
Square brackets indicate optional arguments. Arguments are thus:

• “-v”, “-V and “-h”: same as in §2.1

• “-ims” points to the plugin used to perform the mapping of TAP infor-
mation to a specific ASCII format. Notice that the plugin code contains
all the mapping logic - i.e. where to read the information from, as well as
how to output it.

• “-i” points to the incoming TAP file

• “-o” points to the outgoing ASCII file (to be created)

Upon invocation, the TAP2ASCII module converts the incoming TAP file into
the specified ASCII format, mapping the fields appopriately by executing the

SEMANTIX INFORMATION
TECHNOLOGIES S.A.

– 8 of 24 – ROAMING COMPONENTS
USER MANUAL

CHAPTER 2. ROAMING COMPONENTS

code inside the plugin. Since the plugin contains compiled C code2, arbitrarily
complex mappings can be performed, i.e. calculated fields et.c.

The TAP2ASCII roaming component currently supports the following TAP
formats: 3.1, 3.2, 3.3, 3.4, 3.9. 3.10 and 3.11.

2.3 TAP Validator

The TAP Validator module is used to validate an incoming TAP file against
the applicable TD.57 validations. It also supports operator-specific selection of
validation sets and validation parameters.

The inputs / outputs to the TAP Validator module are depicted in Figure 2.3.

Figure 2.3: TAP Validator inputs and outputs (for legend see Figure 2.1).

The TAP Validator module is triggered with the following command line:

�
1 TAP Validator [−v] [−V] [−h]

2 [−o createdTapFileName]

3 [− r epor t r e p o r tF i l e]

4 [− i v r ed e f i n edVa l i d a t i on s . xml]

5 [− s summaryFile]

2For more on creation of plugins, see the whitepaper on TAP2ASCII available from

http://www.tapeditor.com.

SEMANTIX INFORMATION
TECHNOLOGIES S.A.

– 9 of 24 – ROAMING COMPONENTS
USER MANUAL

CHAPTER 2. ROAMING COMPONENTS

6 [− r t f r t f F i l e]

7 [−o createdTapFileName]

8 − i inputTapFileName
� �
Square brackets indicate optional arguments. Arguments are thus:

• “-v”, “-V and “-h”: same as in §2.1

• “-i” points to the incoming TAP file to be validated

• “-o” points to the outgoing TAP file (incoming file minus offending (se-
vere) calls (in this way, you can easily remove calls that trigger severe
errors from a file) 3.

• “-report” points to an extensive text report to be created, detailing all
warnings and severe/fatal errors with path information - depicting exactly
where they occured in the TAP tree.

• “-iv” points to an XML file that redefines the validation ruleset to apply
as well as the values to use for the validations (i.e. Service Level Agreement
(SLA) parameters).

• “-s” points to a summary text report to be created, detailing the cate-
gories of warnings and severe/fatal errors that occured in the file.

• “-rtf” just like “-s”, but generates an RTF report (for easy printing and
reporting to e.g. the revenue assurance department).

Through the configuration XML file (“-iv” option), the component allows com-
plete customization of the validations logic on a per-roaming-agreement basis.
What this means is that the same TD.57 validations may be applied very differ-
ently for each one among the hundrends of the roaming agreements an operator
may have in place. These are called validation specializations and are stored in
configuration XML files - one per agreement.

The following types of validation specializations are supported:
3. . . in the case where only severe errors are found. If fatal errors are also found then clearly

no outgoing TAP file can be created.

SEMANTIX INFORMATION
TECHNOLOGIES S.A.

– 10 of 24 – ROAMING COMPONENTS
USER MANUAL

CHAPTER 2. ROAMING COMPONENTS

• adjust various ranges and value sets used by a validation.

• adjust the gravity of specific validations for specific roaming agreements.
Declare for instance that a specific validation for a specific roaming agree-
ment should be treated as a warning instead of as a severe error or declare
that a specific fatal-level validation should be disabled for a specific roam-
ing agreement.

• adjust values and toggle options for “billaterally agreed” options.

�
1 <?xml ve r s i on =”1.0” encoding=”ISO−8859−1” ?>

2 <TapValidator>

3 <TapVersion mjVersion=”3” mnVersion=”11”>

4 <Sets>

5 <s e t id=”SupplServiceActionCodeSSSet ” type=”in t”>

6 <value d e s c r i p t i o n=”Reg i s t r a t i on”>0</value>

7 <value d e s c r i p t i o n=”Erasure”>1</value>

8 <value d e s c r i p t i o n=”Act ivat ion”>2</value>

9 <value d e s c r i p t i o n=”Deact ivat ion”>3</value>

10 <value d e s c r i p t i o n=”In t e r r o ga t i on”>4</value>

11 <value d e s c r i p t i o n=”Invocat ion”>5</value>

12 <value d e s c r i p t i o n=”Reg . o f Password”>6</value>

13 </set>

14 <s e t id=”SupplServiceActionCodeUSSDSet” type=”in t”>

15 . . .
� �
The listing above is an example of the first category: value sets are defined here,
and in particular acceptable values for the “SupplServiceActionCodeSSSet”
are defined. Notice that the value sets are TAP version specific (in this case,
the rule set is defined for the respective TAP 3.11 validation - see mnVersion
attribute). This valueset is referenced further down in the XML file, in the
“Validations” section:

�
1 . . .

2 </Sets>

3 <Val idat ions>

4 . . .

5 <va l i d a t i o n element=”Action Code” errorCode=”20”

6 context=”SS” enabled=”true ” s e v e r i t y=”S”>

7 <setsUsed>

8 <setRef>SupplServiceActionCodeSSSet </setRef>

SEMANTIX INFORMATION
TECHNOLOGIES S.A.

– 11 of 24 – ROAMING COMPONENTS
USER MANUAL

CHAPTER 2. ROAMING COMPONENTS

9 </setsUsed>

10 <Bil lAgreements>

11 </Bil lAgreements>

12 </va l i da t i on >

13 . . .
� �
This is the second category of configurability: it allows the user of TAP Validator
to select:

• Whether the validation is enabled or not, through the “enabled” at-
tribute.

• Whether the validation triggers a “W”arning, “S”evere or “F”atal error,
through the “severity” attribute.

�
1 . . .

2 <Bi l l a t e ra lAgreements >

3 <entry id=”strAccountingInfo TapCurrency ” value=”SDR” />

4 <entry id=”bUseOfContentTransactionAgreed” value=”true ” />

5 <entry id=”bUseOfServiceCentreUsageAgreed” value=”true ” />

6 . . .
� �
Finally, this is a section of the third category of configurability: it allows mod-
ification of values that influence specific TD57 validations - those that refer to
”billaterally agreed” data.

The fact that validation specializations are stored as XML files allows for easy
and future-proof management of all SLAs. Editing this XML configuration file
(even through a simple editor like VI, since the structure is quite simple) one can
easily direct the validator to accomodate complex validation requirements. The
XML file used is depicted as “Re-defined validations” in the diagram of Figure
2.3, and defines all validations applicable to a particular roaming agreement
(including validation specializations that override default behaviour).

If no XML file is specific, default values are used for all validations (as set inside
the TD.57 standard).

SEMANTIX INFORMATION
TECHNOLOGIES S.A.

– 12 of 24 – ROAMING COMPONENTS
USER MANUAL

CHAPTER 2. ROAMING COMPONENTS

The TAP Validator roaming component currently supports the following TAP
formats: 3.1, 3.2, 3.3, 3.4, 3.9. 3.10 and 3.11.

2.4 TAPx2TAPy

The TAPx2TAPy module is used to convert an incoming TAP file of one version
into a TAP file of another version.

The inputs / outputs to the TAPx2TAPy module are depicted in Figure 2.4.

Figure 2.4: TAPx2TAPy inputs and outputs (for legend see Figure 2.1).

The TAPx2TAPy module is typically triggered with the following command
line:

�
1 TAPx2TAPy [−v] [−V] [−h]

2 [− g l oba l s c o n f i g u r a t i o nF i l e . xml]

3 [− f i xup]

4 − i inputTAPxFileName

5 −o createdTAPyFileName

6 −ov outputVers ion
� �
Square brackets indicate optional arguments. Arguments are thus:

SEMANTIX INFORMATION
TECHNOLOGIES S.A.

– 13 of 24 – ROAMING COMPONENTS
USER MANUAL

CHAPTER 2. ROAMING COMPONENTS

• “-v”, “-V and “-h”: same as in §2.1

• “-i” points to the incoming “TAPx” file

• “-ov” specifies the TAP version of the outgoing TAP file (the TAP version
of the incoming TAP file is determined automatically)

• “-o” points to the outgoing “TAPy” file to be created

• “-fixup” requests an update of the AuditControlInfo structure at the end
of the conversion. This guarantees that the generated TAP file’s “sum-
mary” section contains up-to-date information on the number of calls, the
total charges, et.c.

• “-globals” points to an XML file that defines conversion parameters.

The conversion parameters XML file contains two sections, “Countries” and
“PMNs”:

�
1 <?xml ve r s i on =”1.0” encoding=”ISO−8859−1” ?>

2 <TAPx2TAPy ve r s i on=”1” >

3 <Countr ies>

4 <CountryIdToCode CountryId=”AFG” Dial ingCode=”93” />

5 <CountryIdToCode CountryId=”ALB” Dial ingCode=”355” />

6 <CountryIdToCode CountryId=”DZA” Dial ingCode=”213” />

7 . . .

8 </Countr ies>

9 <PMNs>

10 <PMN PMNID=”BRAC3” Dial ingCode=”55” />

11 <PMN PMNID=”BRAC4” Dial ingCode=”55” />

12 <PMN PMNID=”BGRVA” Dial ingCode=”359” />

13 . . .

14 </PMNs>

15 </TAPx2TAPy>
� �
As seen in the above sample, these two sections provide the mappings be-
tween. . .

• CountryIDs and DialingCodes

• PMNIDs and DialingCodes

SEMANTIX INFORMATION
TECHNOLOGIES S.A.

– 14 of 24 – ROAMING COMPONENTS
USER MANUAL

CHAPTER 2. ROAMING COMPONENTS

The TAPx2TAPy roaming component includes a static copy of these values that
covers a large percentage of the active operators at this time. If however the
need arises to convert a file that comes from an unknown operator, this XML
file allows the user of TAPx2TAPy to add new values. The component comes
with a default file, which can be extended with new entries at will.

The TAPx2TAPy roaming component currently supports the following TAP
formats: 3.1, 3.2, 3.3, 3.4, 3.9. 3.10 and 3.11.

2.5 TAP Splitter

The TAP Splitter module is used to split the calls inside an incoming TAP file
into those that obey a “splitting specification” and those that do not. Those
that do, are stored in a new TAP file.

The inputs / outputs to the TAP Splitter module are depicted in Figure 2.5.

Figure 2.5: TAP Splitter inputs and outputs (for legend see Figure 2.1).

The TAP Splitter module is triggered with the following command line (ex-
panded over more than one line for ease of reference):

�
1 TAP Spl itter [−v] [−V] [−h]

2 [− f i xup]

3 [−negate]

SEMANTIX INFORMATION
TECHNOLOGIES S.A.

– 15 of 24 – ROAMING COMPONENTS
USER MANUAL

CHAPTER 2. ROAMING COMPONENTS

4 −f c a l l S p l i t t i n g S p e f i c a t i o n . xml

5 − i inputTapFileName

6 −o createdTapFileName
� �
Square brackets indicate optional arguments. Arguments are thus:

• “-v”, “-V and “-h”: same as in §2.1

• “-f”: points to the XML file containing the “splitting specification”. A
splitting specification file typically defines an arbitrary condition (boolean
expression) - a filter - for the incoming file. Each condition is evaluated
for each call and if the call satisfies it, the outgoing file will include a copy
of the call.

• “-o”: points to the file to be created.

• “-fixup”: requests an update of the AuditControlInfo structure at the end
of the filtering. This guarantees that the generated TAP file’s “summary”
section contains up-to-date information on the number of calls, the total
charges, et.c.

• “-negate”: calls that don’t obey the splitting specification are those that
are included in the output file.

The “splitting specification” controls which calls will be included in the output
file.

�
1 <CallSearchData AndOrOr=”AND” FromCallIndex=”0”

2 ToCallIndex=”500”>

3 <!−− CallTypes s e c t i o n −−>

4 <CallType value=”Mobi l eOr ig inatedCal l ” />

5 <CallType value=”MobileTerminatedCall ” />

6 . . .

7 <!−− Addi t iona l r u l e s s e c t i o n −−>

8 <Cal lSearchS ing l eRu le FieldTypeName=”Charge”

9 FieldVarName=”charge ” Condit ion=”EQ” Value=”10” />

10 <Cal lSearchS ing l eRu le FieldTypeName=”ChargedPartyLocation”

11 FieldVarName=”” Condit ion=”EXISTS” Value=”” />

12 . . .

13 </CallSearchData>
� �
SEMANTIX INFORMATION
TECHNOLOGIES S.A.

– 16 of 24 – ROAMING COMPONENTS
USER MANUAL

CHAPTER 2. ROAMING COMPONENTS

As seen in the sample above, the splitting specification XML file, contains two
sections:

• The CallTypes section provides an easy way to select calls based on their
type (e.g. MobileOriginatedCall, GprsCall, etc).

• The Additional rules section allows the user of TAP Splitter to specify
extra conditions (boolean expressions) that should be met on the selected
calls. In the example above, MOC and MTC calls that contain at least
one “Charge” with a value of 10, AND have a ChargedPartyLocation field
present are output. The ”AND” comes from the “AndOrOr” attribute of
“CallSearchData, and could also be ”OR”. Additionally, the FromCall-
Index and ToCallIndex attributes allow filtering based on call indices.

The TAP Splitter roaming component currently supports the following TAP
formats: 3.1, 3.2, 3.3, 3.4, 3.9. 3.10 and 3.11.

2.6 TAP Merger

The TAP Merger module is used to merge a number of incoming TAP files (of
the same TAP version) into a single TAP file (of the same TAP version).

The inputs / outputs to the TAP Merger module are depicted in Figure 2.6.

The TAP Merger module is triggered with the following command line (ex-
panded over more than one line for ease of reference):

�
1 TAP Merger [−v] [−V] [−h]

2 − i i npu tF i l e 1 i nputF i l e 2 [i nputF i l e 3] . . .

3 −o createdTapFileName1
� �
Square brackets indicate optional arguments. Arguments are thus:

SEMANTIX INFORMATION
TECHNOLOGIES S.A.

– 17 of 24 – ROAMING COMPONENTS
USER MANUAL

CHAPTER 2. ROAMING COMPONENTS

Figure 2.6: TAP Merger inputs and outputs (for legend see Figure 2.1).

• “-v”, “-V and “-h”: same as in §2.1

• “-i” points to the list of input TAP files (at least two must be specified)

• “-o” points to the merged TAP file to be created

The TAP Merger roaming component currently supports the following TAP
formats: 3.1, 3.2, 3.3, 3.4, 3.9. 3.10 and 3.11.

2.7 TAP Anonymizer

The TAP Anonymizer module removes “sensitive” information from a TAP file
according to an “anonymization specification”.

The inputs / outputs to the TAP Anonymizer module are depicted in Figure
2.7.

The TAP Anonymizer module is triggered with the following command line
(expanded over more than one line for ease of reference):

�
1 TAP Anonymizer [−v] [−V] [−h]

2 − i inputTapFileName

3 −o createdTapFileName

4 − f s anonymiza t i onSpec i f i c a t i on . xml
� �
SEMANTIX INFORMATION
TECHNOLOGIES S.A.

– 18 of 24 – ROAMING COMPONENTS
USER MANUAL

CHAPTER 2. ROAMING COMPONENTS

Figure 2.7: TAP Anonymizer inputs and outputs (for legend see Figure 2.1).

Square brackets indicate optional arguments. Arguments are thus:

• “-v”, “-V and “-h”: same as in §2.1

• “-fs” points to the XML file defining the anonymization logic. This file
defines what fields are construed to contain “sensitive” information and
provides actions to replace those sensitive values.

• “-i” points to the incoming TAP file to be anonymized

• “-o” points to the anonymized TAP file to be created

�
1 <TapAnonymizer>

2 <Modify nodeType=”Msisdn” ac t i on=”constant ”

3 value =”306941234567” />

4 <Modify nodeType=”Charge” ac t i on=”random”

5 minValue=”0” maxValue=”256” />

6 </TapAnonymizer>
� �
The above anonymization specification XML file:

• replaces all Msisdns with the value 306941234567

• replaces all Charge nodes with random values that range between 0 and
256 (included)

SEMANTIX INFORMATION
TECHNOLOGIES S.A.

– 19 of 24 – ROAMING COMPONENTS
USER MANUAL

CHAPTER 2. ROAMING COMPONENTS

The TAP Anonymizer component can be used whenever the need arises for
sharing of TAP files with a partner (say, a roaming partner) and the legal
rules applicable in your country prohibit sharing call information. Through
the configuration XML file, you can specify arbitrarily complex anonymization
rules.

The TAP Anonymizer roaming component currently supports the following
TAP formats: 3.1, 3.2, 3.3, 3.4, 3.9. 3.10 and 3.11.

2.8 TAP2XML

The TAP2XML component is used to create XML files from TAP3 input files
(presumably received by another PMN or generated by other systems).

The inputs / outputs to the TAP2XML module are depicted in Figure 2.8.

Figure 2.8: TAP2XML inputs and outputs (for legend see Figure 2.1).

The TAP2XML module is triggered with the following command line (expanded
over more than one line for ease of reference):

�
1 TAP2XML [−V] [−h]

2 [−o createdXmlFileName]

3 − i inputTapFileName
� �
Square brackets indicate optional arguments. Arguments are thus:

SEMANTIX INFORMATION
TECHNOLOGIES S.A.

– 20 of 24 – ROAMING COMPONENTS
USER MANUAL

CHAPTER 2. ROAMING COMPONENTS

• “-V and “-h”: same as in §2.1

• “-i” points to the input TAP file

• “-o” points to the XML file to be created (if argument is missing, output
goes to stdout

An example output XML file is shown below:

�
1 <?xml ve r s i on =”1.0” encoding=”utf−8” ?>

2 <TAP3File mjVersion=”3” mnVersion=”10”

3 xmlns : x s i=”http ://www.w3 . org /2001/XMLSchema−i n s t ance”>

4 <DataInterChange>

5 <t rans fe rBatch>

6 <batchContro l In fo>

7 <sender>DEUD2</sender>

8 <r e c i p i e n t >GRCPF</r e c i p i e n t >

9 <f i leSequenceNumber >10000</ fi leSequenceNumber>

10 <f i leCreationTimeStamp>

11 . . .
� �
The TAP2XML roaming component currently supports the following TAP for-
mats: 3.1, 3.2, 3.3, 3.4, 3.9. 3.10 and 3.11.

2.9 XML2TAP

The XML2TAP component is used to create TAP files from XML input files
(presumably generated by TAP2XML).

The inputs / outputs to the XML2TAP module are depicted in Figure 2.9.

The XML2TAP module is triggered with the following command line (expanded
over more than one line for ease of reference):

SEMANTIX INFORMATION
TECHNOLOGIES S.A.

– 21 of 24 – ROAMING COMPONENTS
USER MANUAL

CHAPTER 2. ROAMING COMPONENTS

Figure 2.9: XML2TAP inputs and outputs (for legend see Figure 2.1).

�
1 XML2TAP [−V] [−h]

2 [−o createdTapFileName]

3 − i inputXmlFileName
� �
Square brackets indicate optional arguments. Arguments are thus:

• “-V and “-h”: same as in §2.1

• “-i” points to the input XML file

• “-o” points to the TAP file to be created

The XML2TAP roaming component currently supports the following TAP
formats: 3.1, 3.2, 3.3, 3.4, 3.9. 3.10 and 3.11.

SEMANTIX INFORMATION
TECHNOLOGIES S.A.

– 22 of 24 – ROAMING COMPONENTS
USER MANUAL

Chapter 3

Supported platforms

The Semantix Roaming Components are built using ISO standard C++ code
(ISO C99 C++1) and can be compiled and installed in every system featuring
a modern C++ compiler (compiled binaries are also offered for some platforms
— see below).

The above “requirements” are such that are met by practically every modern
platform and are certainly met by the following platforms:

• Commercial systems

– Solaris 8 and later (SunOS 5.8 and later, both SPARC and x86 ar-
chitectures)

– HP-UX 11i v1 and later

– IBM AIX 5L or Linux

– Microsoft Windows NT and later

– Any UNIX system with an ISO C99 C++ compiler

• Open source kernels (any supported CPU - Intel, AMD, PowerPC, ...)

1By this time, practically all modern C++ compilers for every platform support ISO C99

C++.

23

CHAPTER 3. SUPPORTED PLATFORMS

– Linux (any distribution - SuSE, Debian, RedHat, Madrake - with any
kernel from 2.4.3 - 2.6.20)

– FreeBSD (4.8 and later)

– OpenBSD (3.5 and later)

– NetBSD (2.0 and later)

Precompiled binaries are provided and directly supported if the destination
platform is one of the following:

• Solaris (sparc, x86)

• Linux (x86, amd64)

• FreeBSD (x86)

• OpenBSD (x86)

• Windows 2000, Windows XP, Windows Vista

SEMANTIX INFORMATION
TECHNOLOGIES S.A.

– 24 of 24 – ROAMING COMPONENTS
USER MANUAL

